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Dynamical phase transitions in the Little-Hopfield model 
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Abstract. The time evolution of the distance W e e n  two random initial configurations 
subjected m the same thermal noise is used to study dynamical phase transitions in a W o r  
neural networks hained by the Hebb rule. Numerical results are given for fully COMeced 
architectures, whereas, in the dilute case. both aaalytical and numerical outcomes are provided 
and a good agreement is shown to exist between the two sefs of results 

It has been shown [ 11 that dynamical phase transitions can be observed in a large class of 
spin models, by measuring the time evolution of the normalized Hamming distance between 
two input patlerns subjected to the same random noise. The same approach has been used 
[2] for a modification of a class of the threshold automata of the McCulloch and Pitts [3] 
type. 

In spin models [I] two phases are observed in the long-time limit: at high temperature, 
independently of the initial conditions, the distance between the two states decreases or 
vanishes, according to the particular model (Sherrington-Kirkpatrick (SK) model, spin-glass 
models in arbitrary dimensions, king models): at low temperature the two configurations are 
confined, on average, at a non-zero distance which depends on the initial mutual positions. 
Between these two extrema there is an intermediate region, characterized by the fact that the 
two configurations have a finite non-zero distance in the long-time l i t  which, on average, 
is independent of the starting conditions. 

In this paper we wish to extend these results to a particular class of spin models, i.e. 
neural networks: more precisely we apply the distance method to the Little-Hopfield model 
[4], where neurons are described by an king variable Si = izl, and the synaptic coupling 
between the neuron j and k is given by the Hebb rule [5] ,  i.e. by the correlation between 
the P stored memories {e:}: 

jL=l '. 
for j # k and .Iii = 0, where N is the number of neurons and P I N  = ci is the storage 
capacity. Moreover, we assume parallel dynamics for the network. Serial dynamics will be 
briefly discussed below. 

At temperature T the state of the network at time t + 1 (which we denote Si"(? + At) 
with At = 1) is given in tenns of network configuration at time t as follows: 
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Figure 1. Hamming distance Dm versus temperatme T in the fully connected architemre for 
four different values of U: U = 0.125 (a); U = 0.25 (b); U = 0.5 (c); U = 1.0 (d). The three 
sets of points correspond to initial distance D(0) = 1 (triangles, uppermost curve). D(0) = 0.5 
(diamonds, middle curve). D(0) = 1 / N  (masses, lowest curve) (N = 256). 

where vi is a random number in the range [O, 11. 
We also consider the time evolution of a different configuration Sb: 

subjected to the same noise qi and we introduce the normalized Hamming distance 

We shall call Dm the long-time (i + CO) limit of D(t) .  We wish to study the dependence 
of the order parameter D, on T and a. 

To begin nith, we present numerical results of some simulations for fully connected 
networks. Even though, as stressed already, in all simulations we have used the parallel 
dynamics, where all the sites are simultaneously updated at each iteration, we have verified 
that comparable results are obtained adopting a serial heat-bath dynamics, where, at each 
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iteration, only one site i ,  randomly selected among the N, is~updated according to (2) 
and (3), with At = 1/N. The simulations have been performed for three system sizes 
(N = 256,512 and 1ooO) with no significant difference in the behaviour of D ,  and for a 
wide range of the storage capacity a. In figure 1 we show the dependence of D ,  on the 
temperature ~T for N = 256 and for four values of a (a = 0.125, 0.25, 0.5 and 1). Each 
experimental point corresponds to the average on 100 different starting configurations for the 
initial states {Sf] and {Sf]; for each case we take t = 500 Monte Carlo steps for the parallel 
dynamics and f = 500 x N for the serial case. For each value of a, three plots are shown, 
corresponding to different initial Hamming distances between the two configurations. On 
the upper curve we report the final distances when the initial configurations are opposite, 
(for each site i, Sf = -Si”), corresponding to a starting distance D(t = 0) = 1. The 
middle curve shows D ,  when one starts with two uncorrelated states (D(0) = 0.5); finally 
the lowest curve is obtained using two initial configurations differing by a single neuron 
(D(0) = l/N). Each initial configuration is uncorrelated with the memories { e / ] .  

From a qualitative point of view, the results of figure 1 are similar to the results reported 
in [I] for the SK model, having (J i j )  = 0 and (1;) = 1, where a dynamical phase transition 
also occurs at finite temperature. In fact in all the simulations it is possible to find a 
temperature 7j above which D ,  has a finite noh-zero value that is independent of the starting 
distance D(0). The use of neural networks allows us, however, to study the dependence on 
the storage capacity a and provides insights into the nature of the phase transitions. 

Our results are that ?j increases with a and, more generally, for each fixed T > 7j. D ,  
also increases with a. We cannot give a comprehensive explanation of this behaviour for the 
fully connected network, because, as is well known, no analytical result for such a network 
is available owing to the presence of correlation among the sites after the b t  time step 
(only for the dilute case can analytical results be given, as we shall discuss below). In order 
to analyse the dependence of h on CY we report in figure 2 computer data for ?j obtained 
with several values of a and we compare them to the curve Tg = 1 + f i  which gives the 
transition temperature between the spin glass ‘and the paramagnetic phase. The computer 
data are obtained as follows; putting D, equal to D , ,  4, D3 for D(t = 0) = 1,  f. 1/N 
respectively, we define the parameter 

(5 )  

TI is operationally defined as the smallest temperature for which q < 0.1. The agreement 
between the data and the curve Tg = 1 + f i  in figure 2 is rather good and suggests the 
identification between E and Tg; it can be noted that also in the Demda’s analysis of the 
SK model the dynamical phase-transition temperature (which is % 1) seems numerically 
equal to the spin-glass paramagnetic static phase transition T, = 1. Let us finally note that 
our conclusion is valid regardless of the details in the definition of 6, i.e. we may identify 
7j and &, for a rather wide class of definitions of 7j. 

Although no analytical proof is available to support this identification, we can understand 
it as follows: passing from the spin glass to the paramagnetic phase the network loses any 
capacity to work as a retrieval system since both the global (magnetization) and the local 
(Edwards-Anderson) parameters vanish; in these conditions one expects that the dependence 
on the initial conditions disappears, as happens for T z TI. 

It is known [l]  that some models show the existence of a second phase transition char- 
acterized by a critical temperature Tu such that, for T > Tu, D ,  = 0. We have investigated 
this possibility for the Little-Hopfield model and we have seen evidence for the second 
phase wansition only for small values of N, whereas the effect tends to disappear with 

1 Di - Dj 

f I =  1;s I=/. 
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Figure 2. Dynamical transition lempemure ‘lj versus U for the fully connected case. Simulation 
data for N = 256 are compared with the equilibrium transition temperature (full curve) 
Tg = 1 +fi. 

increasing N .  In figure 3 we report D, as a function of T with 01 = 1 for two values 
of N (N = 256 in a and N = 1000 in b). We observe that, while for small N the data 
show a second phase transition Tu, this effect disappears at N = 1ooO. From this numerical 
evidence we are led to conclude that Doo does not vanish for any finite temperature in the 
thermodynamic limit; this conclusion agrees with the SK analysis [l] and is also supported 
by the analytical calculation performed in the dilute case (see below). 

After the analysis of the fully connected network, let us now consider the dilute case, 
characterized by synaptic couplings given by 

with probability C / N  and 

Jrk = O  
with probability 1 - C / N ,  with the constraint C < In N (again we assume Jii = 0). The dilu- 
tion hypothesis is needed at zero temperature to ensure that the neurons remain uncorrelated 
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Figure 3. Hamming distance D, versus temperature T in the fully connected case, for hvo 
different network sizes: (a) N = 256 and (b) N = 1WO. 

at any time t [6]. This will allow us to obtain a recursive relation for D(t) .  Since we are 
mainly interested in the high-temperature region, where the dynamical phase transitions 
take place, we expect a less stringent requirement; in particular we find a good agreement 
between analytical and numerical results by imposing the weaker condition C << N .  

In order to obtain a recursive relation for D(t) ,  we first compute the conditional 
probability for the Hamming distance: D(t + 1) having the value D', given the network 
configurations at time t : Si"(') and S f ( t ) :  

P(D( t  + 1) = D'l{S"(t)), { S b ( f ) ) )  = T r p p  fii dvi S(S? - signbp - v i ] )  

1 

where p; = f + f tanh ( cj Ji,S;/T). The result is 
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Next we compute the conditional probability for D(t  + 1) having the value D’, given 
the value D at time t: 

where 

In order to compute (10) we employ the method used in [7] (see also [SI). More details 
on the calculation are reported in the appendix. We get, in the N + 00 limit, 

where 
01 

A = - .  TZ 

(15) 
where A is a function of A and D: 

1 
2hD(1- D) ’ A =  

The non-trivial fixed point relative to (14) is obtained by solving the equation 

D ,  = f A) (17) 
with 0, = D(t = 00) # 0. For small A the non-trivial fixed point is given by 

2A D,”-; 
x 

Let us stress that the solution of (17) depends on (Y and T only via the parameter A = a/T2.  
We report the numerical solutions of (14) in figure 4 (full curve) and we compare it with 
computer data. We see that the agreement with theoretical expectation is, in general, 
satisfactory; in particular, the data also depend on OL and T via the parameter A. This 
figure also displays the independence of the results from the number of active connections 
C, provided that C < N, we report both C = 100 and C = 120 cases, with N = 1000. 
For small A the dependence of D ,  is approximately linear: D ,  N 2A/x = 2m/(xTZ), in 
agreement with (18). Notice that this behaviour implies that D, does not vanish for any 
T # 00. The small discrepancies, for very small values of A (A < 0.03), between analytical 
results and computer data should be attributed to finitesize effects, since we have checked 
that in general the agreement improves with increasing N. 

We cannot compare the solution of (17) with data for large values of A% even 
though (17) has non-trivial fixed points also for h > 1; the reason is that only for 
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Figure 4. Hamming distance 0.. versus the parameter A = a / T 2  for the dilute case. 
Analytical results (full curve) follow from (17); computer data are for different values of a 
in the range (0.125, 1.0) and WO values of the dilution factor (corresponding to C = 100,lM 
and N = 1000). 

sufficiently large temperatures (i.e. not large values of A) can we relax the strong-dilution 
condition: C -= 1nN and simply assume C < N; as a matter of fact, as pointed 
out already, the thermal noise has the effect of diluting the correlation among the sites 
induced, at any time step, by the dynamical equation and therefore to allow larger values 
of C; for small temperatures this does not happen and therefore we should satisfy a 
more stringent condition 1 << C < lnN, which is beyond our computer's present 
capabilities. 

In figure 5 we report D ,  versus temperature, for four values of OL (here 
a! = P / C ) :  U = 0.125, 0.25, 0.5 and 1, for a dilution factor C / N  = I. 
This figure should be compared to the analogous figure 1 obtained for the fully 
connected case: the qualitative behaviour is similar but there are some remarkable 
differences. For example, we have checked that the simple dependence of Dw 
on T and a! via the parameter A = cu/TZ, which holds in this case, is not 
valid for the fully connected architecture; a second difference which can be noted 
is that the temperatures b (when the curve coalesces) in figure 5 are significantly 
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Figure 5. Hamming distance D, versus temperam T in the dilute case. for four different 
values of a: (a) a = 0,125; (b) a = 0.25, (c) a = 0.5; (d)  a = 1.0. The three sea of points 
conespond to initial distance D(0) = 1 (triangles, uppermost curve), D(0) = 0.5 (diamonds, 
middle curve), D(0) = 1 / N  (crosses, lowest w e )  (N = 1000 and C = 100). 

smaller in the present case than the ones obtained from the data of fully connected 
networks. 

In conclusion we have studied by the distance method the dynamical phase transitions 
of the Little-Hopfield model in the high-temperature regime. For the fully connected case 
our results on the T-dependence are qualitatively similar to previous analyses of spin-glass 
models; in the present analysis, however, the presence of the storage-capacity parameter 
has also allowed us to study the or-dependence. In the dilute case we have shown, both 
analytically and numericalIy, that the long-time limit of the distance depends only on the 
ratio A = or/T2, with a functional dependence that for large temperatures and small or is 
given by D, N 2a/(nT2). 
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Appendix 

In order to solve equation (10) auxiliary integration variables hf, hf (1 = 1.. . N) have 
been introduced 

where Nl and W are given by the following expressions: 

= . N /  - dx e i ~ x ( 2 ~ - ~ ) / 2  TrFsb ei=/2xj sysj 

= 4 " N j ~  dx eiNx(2D-l)/2+NI~m (x/Z) 

2R 

(A3) 

and the last integral can easily be computed in the N + 03 l i t  by the steepest-descent 
method. The factor GI in (A2) is given by 

GI = T I s a s b  exp i C  ($XS,'S~" - yf~ljsj" - y f ' ~ j ~ j 6 )  1 [ j  

= 4N exp In (cos (x/2) cos yf ~j cos yf'4j - i sin (x/2) sin yyhj sin yf '~ , j )  . 

(A41 

I [ j  

Since ( & j )  = 0 and (J$ = a / N  one easily gets 

G~ = 4~ exp N lncos (x/2) - +a[yp2 + yfz + 2iypy; tan (x/2)1] . (AS) I 
Putting (AS) into (AZ), and performing the x integration by the steepest-descent method, 
we get 
NI 1 a 

dyf dyf'exp { -$yy2 + $'I + ( 2 0  - 1)ayfyp + i(yfhf + $$)} 

From this result and (Al), by changing variables as follows: 

we get 
hf = T(zi +U[) hf = T(ul - zd 

W 
x exp {-A[(1 - D)qZ + Dur21 - iGl tanh(zt +ut)  + tanh(zI - u t ) ] ]  

(AS) 
with A = T2/2aD(1 - D); in the N + w limit one gets the results written in (12H16). 
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